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Abstract

We demonstrate an equivalence between the rank 2 fragments of the
polymorphic lambda calculus (System F) and the intersection type dis-
cipline: exactly the same terms are typable in each system. An imme-
diate consequence is that typability in the rank 2 intersection system
is DEXPTIME-complete. We introduce a rank 2 system combining
intersections and polymorphism, and prove that it types exactly the
same terms as the other rank 2 systems. The combined system sug-
gests a new rule for typing recursive de�nitions. The result is a rank 2
type system with decidable type inference that can type some inter-
esting examples of polymorphic recursion. Finally, we discuss some
applications of the type system in data representation optimizations
such as unboxing and overloading.

Keywords: Rank 2 types, intersection types, polymorphic recursion,
boxing/unboxing, overloading.

1 Introduction

In the past decade, Milner's type inference algorithm for ML has become
phenomenally successful. As the basis of popular programming languages
like Standard ML and Haskell, Milner's algorithm is the preferred method
of type inference among language implementors. And in the theoretical
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community, the literature on type inference is dominated by extensions of
ML's let-polymorphism.

In this paper we examine some alternatives to ML that have attracted
surprisingly little attention: the systems of rank 2 types introduced by
Leivant [21]. These systems are slightly more powerful than ML|strictly
more terms can be assigned types|and the increased power comes for free|
the complexity of typability is identical. But the unique feature of the rank 2
systems that justi�es further study is that, in sharp contrast to other exten-
sions of ML, they abandon let-polymorphism.

We use the expression (�x:xx) to illustrate the limitations of let-poly-
morphism. It is well known that this expression cannot be typed in ML:
the only way for ML to type the self-application xx is by assigning a poly-
morphic type to x, and ML does not allow abstraction over variables with
polymorphic type. In ML, the only mechanism for introducing variables of
polymorphic type is the let-expression:

let x = (�y:y)
in xx

This let-expression binds x to the identity function (�y:y), which has the
polymorphic type 8t:t! t in ML. By ML's let-polymorphism, x is assigned
the type 8t:t! t, which is su�cient to type xx.

The problem with this is that we cannot typecheck the uses of x (the
application xx) separately from its de�nition (the function (�y:y)). So ML
must be extended with a module language in order to support programming
in the large, where it is impractical to require every polymorphic de�nition
to appear in the same source �le as every use.

In contrast, (�x:xx) is typable in all of the rank 2 systems we consider.
Here are two rank 2 typings:

(�x:xx) : (8t:t! t)! (8s:s! s);

(�x:xx) : (t! t) ^ ((t! t)! (t! t))! (t! t):

The �rst typing says that (�x:xx) is a function that, when given an argument
with type t! t for any type t, produces a result with type s! s, for any s.
The identity function is an appropriate argument.

The second typing says that (�x:xx) is a function that, when given an
argument having both the types (t ! t) and (t ! t) ! (t ! t), produces
a result of type (t ! t). Once again, the identity (�y:y) is an appropriate
argument.
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The rank 2 systems we consider are subsystems of two widely studied
type systems, System F and the system of intersection types. System F,
introduced independently by Girard [7] and by Reynolds [28], predates ML
and can type many more terms. A recent result of Wells [34], however, shows
that typability in the system is undecidable, putting type inference out of
reach.

The system of intersection types, introduced independently by Coppo
and Dezani [5] and by Sall�e [29], can type even more terms than System F:
it types all (and only) the strongly normalizing terms.1 The equivalence of
typability and strong normalization implies that type inference, just as with
System F, is unattainable.

With the goal of type inference in mind, we seek decidable restrictions of
these type systems. Restrictions based on the rank of types were suggested
by Leivant [21]. The rank of a type can be easily determined by examining it
in tree form. A type is of rank k if no path from the root of the type to a type
constructor of interest (either type intersection `^' or type quanti�cation `8')
passes to the left of k arrows. The types shown in Figure 1 are rank 2 types,
because no path from root to ^ or 8 passes to the left of two arrows. But
the types shown in Figure 2 go beyond rank 2 (they are rank 3 types). The
types given above for (�x:xx) are rank 2 types.
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Figure 1: Examples of rank 2 types

Ranks 0 and 1 of Leivant's systems are equivalent to the simply typed
lambda calculus, which can type fewer terms than ML. But starting with

1Without the type constant !.
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Figure 2: Types that go beyond rank 2

rank 2, the systems can type more terms than ML.
Rank 2 of System F, which we call �2, has received the most study. Mc-

Cracken [23] proposed a type inference algorithm for �2 based on Leivant's
ideas. This algorithm is incorrect. Kfoury and Tiuryn [12] show that the
complexity of typability in �2 is identical to that of ML. Kfoury and
Wells [16, 17] give a correct type inference algorithm, and show that ranks 3
and higher in System F are undecidable.

Leivant's original paper is almost the only work on rank 2 of the inter-
section type discipline, which we call I2. Leivant sketched a type inference
algorithm for I2, but the algorithm was not formalized and proved correct
until recently [33]. Leivant also conjectured the undecidability of ranks 3
and higher in the intersection system; to our knowledge the details of his
proof idea have never been veri�ed.

I2 has a signi�cant advantage over �2: it has principal typings. This
means that for any term M , if M is typable in I2, then there is an I2 typing
judgment

A `M : �

that represents all of the possible typing judgments for M . Other typings
for M can be obtained from the principal typing by simple operations (sub-
stitution and subsumption).

Contributions of the paper

Since I2 has principal typings, and �2 does not, we believe I2 deserves
more study. The �rst contribution of this paper is to develop some of the

4



basic properties of I2. We establish the following equivalence:2 a term is
typable in I2 if and only if it is typable in �2. An immediate corollary is that
typability in I2 is DEXPTIME-complete, identical to typability in �2 and
ML. We also consider some variants of I2, and show they are all equivalent
in terms of typability.

The second contribution of this paper is to introduce a new type system,
P2, that combines rank 2 intersection types and top-level quanti�cation of
type variables, as in ML. P2 has principal typings, so it clearly improves
on �2. Its advantage over I2 is more subtle. The addition of quanti�ers
makes types more expressive: the quanti�ers identify generic type variables,
that is, type variables which can safely be instantiated with any type. In
particular, this suggests an interesting type inference algorithm for recursive
de�nitions.

A recursive de�nition is written in the form (�xM), and is meant to
denote a program x such that

x = M;

whereM may contain some uses of x. The standard rule for typing recursive
de�nitions looks like

A [ fx : �g `M : �

A ` (�xM) : �

Most type inference algorithms restrict the type � in this rule to be a simple
type. The rule of polymorphic recursion relaxes this restriction by allow-
ing � to be an ML type scheme. This gives a useful increase in typing
power|it can type some natural programs that cannot be typed by the
simple recursion rule. However, polymorphic recursion makes type infer-
ence undecidable [14].

We suggest another way of typing recursive de�nitions:

A [ fx : �g `M : �

A ` (�xM) : �
(where � � �)

The rule says that as long as the type � of M is more general than the
assumption � on x needed to type M , we can deduce � as the type of the
recursive de�nition.

We extend P2 to type recursive de�nitions in this way. The resulting
system can type many (but not all) of the examples that seem to require

2The equivalence between the rank 2 fragments of System F and the intersection type
discipline has been shown independently by Yokouchi [35].
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polymorphic recursion. Moreover, the system has principal types and de-
cidable type inference.

Organization of the paper

In x2, we introduce Is2, a syntax-directed version of I2, and �
s
2, a syntax-

directed version of �2. The main result is that a term is typable in one
system if and only if it is typable in the other. An immediate corollary
is that typability in Is2 is DEXPTIME-complete, the same complexity as
in ML and �s

2. In x3, we present the type inference algorithm for Is2. In
x4, we discuss some other de�nitions of rank 2 intersection type systems,
and show their equivalence with I2. In x5, we de�ne P2, show that it has
principal typings, and give a type inference algorithm. In x6, we discuss
various ways of typing recursive de�nitions, and we propose an extension
of P2 that can type many examples of polymorphic recursion. We discuss
applications of P2 to compilation in x7, and we summarize our results in x8.

2 Rank 2 type systems

2.1 Preliminaries

We will be de�ning a number of type systems; here we develop machinery
that will be useful in all of them.

We use x; y; : : : to range over a countable set of variables, and t; s to
range over a countable set, Tv, of type variables. The terms and types of
the systems will vary, but in all cases we use �; �; : : : to range over types,
and M , N , . . . to range over terms.

The terms of the (pure) lambda calculus are de�ned by the following
grammar:

M ::= x j (M1M2) j (�xM):

Unless stated otherwise, terms are considered syntactically equal modulo
renaming of bound variables. We adopt the usual conventions that allow us
to omit parentheses: application associates to the left, and the scope of an
abstraction `�' extends to the right as far as possible. We write �x1 � � �xn:M
for (�x1(� � �(�xnM) � � �)).

The types of our systems will all be subsets of the types with quanti�-
cation and intersection:

� ::= t j (�1 ! �2) j (8t�) j (�1 ^ �2):
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By convention, `!' associates to the right, so that, e.g., (t ! (t! t)) may
be written more compactly as t ! t ! t, and `^' binds more tightly than
`!', e.g., �^ � ! t means (�^ �)! t. The scope of a quanti�er `8' extends
as far to the right as possible. We write (8~t�) for the type

(8t1(8t2(: : : (8tn�) : : :)));

where ~t = t1; t2; : : : ; tn and n � 0.

The set of simple types, T0, is de�ned by the following inductive equa-
tion:

T0 = f t j t is a type variable g [ f (� ! �) j �; � 2 T0 g:

A type environment is a �nite set fx1 : �1; : : : ; xn : �ng of (variable, type)
pairs, where the variables x1; : : : ; xn are distinct. We use A to range over
type environments. We write A(x) for the type paired with x in A, dom(A)
for the set fx j 9�:(x : �) 2 Ag, and Ax for the type environment A with
any pair for the variable x removed. We write A1 [A2 for the union of two
type environments; by convention we assume that dom(A1) and dom(A2)
are disjoint. For any set T of types, we say A is a T type environment if
A(x) 2 T for all x 2 dom(A).

The notion of free type variable is de�ned as usual. We write FTV(�) for
the free type variables of a type �, and FTV(A) for the free type variables
of all types appearing in A. We write Gen(A; �) for the 8-closure of � by
the type variables FTV(�)� FTV(A).

A judgment is a relation between type environments, terms, and types,
written A ` M : �. A term M is typable if A ` M : � for some A and �.
A pair hA; �i of a type environment and a type is called simply a pair .
Two pairs hA1; �1i and hA2; �2i are disjoint if their free type variables are
disjoint. An acceptable pair of a term M in a type system is a pair hA; �i
such that the judgment A ` M : � holds in the type system. We write
APT (M) for the set of acceptable pairs of M in a type system T .

A substitution is a mapping from type variables to simple types which is
the identity on all but a �nite number of type variables. We use S;R;Q; U
to range over substitutions. The domain and range of a substitution S are
de�ned

dom(S) = ft j St 6= tg;

rng(S) =
[

t2dom(S)

FTV(St):
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If dom(S) = ft1; t2; : : : ; tng and Sti = �i for all i, then S can be written in
the form ft1 := �1; : : : ; tn := �ng.

The application of substitutions is extended to types, type environments,
and pairs in the usual way. The composition of substitutions is denoted
by juxtaposition, so that SRt = (SR)t = S(R(t)). We say S1 and S2 are
disjoint if dom(S1) and dom(S2) are disjoint sets. If S1 and S2 are disjoint,
then the substitution S1 [ S2 is de�ned as follows:

(S1 [ S2)(t) =

8<
:

S1(t) if t 2 dom(S1);
S2(t) if t 2 dom(S2);
t otherwise.

Note that we have made a severe restriction on substitutions: they map
type variables only to simple types, and not types in general.

2.2 The rank 2 intersection type system

There are many di�erent formulations of intersection type systems; see van
Bakel [33] for a survey. We will present a very restricted intersection type
system here, the system of rank 2 intersection types. Our system is a slight
generalization of van Bakel's version (see x4.1).

The terms of the intersection type system are just the terms of the
lambda calculus. The sets T1 and T2 are de�ned to be the smallest sets
satisfying the following equations:

T1 = T0 [ f(� ^ �) j �; � 2 T1g;

T2 = T0 [ f(� ! �) j � 2 T1; � 2 T2g:

The set T1 of rank 1 types consists of �nite, nonempty intersections of simple
types. T2 is the set of rank 2 intersection types: these are types possibly
containing intersections, but only to the left of a single arrow. Note that
T0 = T1 \T2, and for i 2 f0; 1; 2g, if � 2 Ti, then S� 2 Ti.

In order to simplify subsequent de�nitions, we adopt the following syn-
tactic convention: we consider `^' to be an associative, commutative, and
idempotent operator, so that any T1 type may be considered a �nite, non-
empty set of simple types, written in the form (

V
i2I �i), where each �i 2 T0.

De�nition 1 For i 2 f1; 2g, we de�ne the relation �i as the least partial
order on Ti closed under the following rules:

i) If f�j j j 2 Jg � f�i j i 2 Ig, then (
V
i2I �i) �1 (

V
j2J �j).
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(var) A [ fx : (
V
i2I �i)g ` x : �i0 (where i0 2 I)

(abs)
Ax [ fx : �g `M : �

A ` (�xM) : � ! �

(app)
A `M : (

V
i2I �i)! �; (8i 2 I) A ` N : �i

A ` (MN) : �

Figure 3: Typing rules of Is2. Types in type environments are in T1, and
derived types are in T2.

ii) If �1 �1 �1 and �2 �2 �2, then (�1 ! �2) �2 (�1 ! �2).

The �rst rule says that �1 expresses the natural ordering on intersection
types, and the second rule says that �2 obeys the usual antimonotonic
ordering on function types, restricted to rank 2.

Some useful properties of the orderings �1 and �2 are summarized in
the following lemma.

Lemma 2

i) If � 2 T0 and � 2 T1, then � �1 � i� � = � .

ii) If � 2 T2 and � 2 T0, then � �2 � i� � = � .

iii) For i 2 f1; 2g, if � �i � , then S� �i S� .

Judgments in our rank 2 system are de�ned inductively by the rules of
Figure 3. We write Is2 . A ` M : � if the judgment A ` M : � follows by
these rules, with types appearing in type environments restricted to T1, and
derived types restricted to T2. The superscript `s' in Is2 indicates that the
system is syntax-directed, in contrast with a later variant (see x4).

If A1 and A2 are T1 type environments, we de�ne A1 + A2 , a T1 type
environment, as follows: for each x 2 dom(A1) [ dom(A2),

(A1 + A2)(x) =

8<
:

A1(x) if x 62 dom(A2);
A2(x) if x 62 dom(A1);
A1(x) ^A2(x) otherwise.

Lemma 3 (Weakening) If Is2 . A ` M : �, then Is2 . A + A0 ` M : � for
any T1 type environment A0.
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Proof: An easy induction on typing derivations. 2

Lemma 4 (Substitutivity) If Is2 . A `M : �, then Is2 . SA `M : S� for
any substitution S.

Proof: By induction on the structure of M .

i) If M = x, then A(x) = (
V
i2I �i) and � = �i0 for some i0 2 I . Then

SA(x) = (
V
i2I S�i), I

s
2 . SA ` x : S�i0 , and S� = S�i0.

ii) If M = �xN then � must be of the form �1 ! �2, and I
s
2 . Ax [ fx :

�1g ` N : �2. Then by induction, I
s
2 . S(Ax[fx : �1g) ` N : S�2, so by

rule (abs), Is2 . SAx ` N : S�1 ! S�2, or I
s
2 . SAx ` N : S(�1 ! �2).

Then by weakening, Is2 . SA ` N : S(�1 ! �2).

iii) If M = M1M2, then for some (
V
i2I �i) 2 T1 we have Is2 . A ` M1 :

(
V
i2I �i) ! � and Is2 . A ` M2 : �i for all i 2 I . By induction we

have Is2 . SA `M1 : (
V
i2I S�i)! S� and Is2 . SA `M2 : S�i, and by

rule (app), we have Is2 . SA `M1M2 : S�, as desired.

2

2.3 System F

The terms of System F are exactly the terms of the lambda calculus. The
types of System F are de�ned by the following grammar:

� ::= t j (�1 ! �2) j (8t�):

We consider System F types to be syntactically equal modulo renaming of
bound type variables, reordering of adjacent quanti�ers, and elimination of
unnecessary quanti�ers.

The types of System F can be organized into a hierarchy as follows.
First, de�ne R(0) = T0. Then for n � 0, the set R(n+ 1) is de�ned to be
the least set satisfying

R(n+ 1) = R(n) [ f(�! �) j � 2 R(n); � 2 R(n+ 1)g

[ f(8t�) j � 2 R(n+ 1)g:

It will be useful to restrict types so that quanti�ers do not appear to the
immediate right of arrows. Therefore we de�ne the sets

S = S0 [ f(8t�) j � 2 Sg;

S0 = T0 [ f(� ! �) j � 2 S; � 2 S0)g:
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(var) A [ fx : �g ` x : � (where � � �)

(abs)
Ax [ fx : �1g `M : �2
A ` (�xM) : �1 ! �2

(app)
A `M : (8~t�1)! �2; A ` N : �1

A ` (MN) : �2
(each ti 62 FTV(A))

Figure 4: Typing rules of �s
2. Types in type environments are in S(1), and

derived types are in S0(2).

We write S(n) for S \ R(n) and S0(n) for S0 \ R(n). Note that the S(1)
types are exactly the ML type schemes.

De�nition 5 Suppose � = 8t1 � � � tn:� 2 S(1), and �; � 0 2 T0. We say � 0 is
an instance of �, written � � � 0, if and only if for some �1; : : : ; �n 2 T0, we
have � 0 = ft1 := �1; : : : ; tn := �ng� . We write � � (8s1 � � �sm�

0) if and only
if s1; : : : ; sm are not free in � and � � � 0.

Note that the sense of `�' is opposite to that of our other subtyping relations;
for example, both \� �2 �" and \� � �" may be read, \� is more general
than � ." We make an exception in the case of `�' to be consistent with its
use in ML [24].

We now de�ne �s
2, our version of the rank 2 fragment of System F. The

superscript `s' in �s
2 indicates that the system is syntax-directed. See Kfoury

and Tiuryn [12] for a de�nition of �2, the non-syntax-directed version.

The judgments of the system are de�ned by the rules of Figure 4. We
write �s

2 . A `M : � if A `M : � is derivable from these rules, where types
in type environments are restricted to S(1), and derived types are restricted
to S0(2).

�s
2 is closely related to the system ��

2 studied by Kfoury et al. [12, 17]:

Theorem 6
i) If �s

2 . A `M : �, then ��
2 . A `M : �.

ii) If ��
2 . A `M : �, then � is of the form 8t1 � � � tn�

0, where �0 2 S0(2),
and �s

2 . A `M : �0.
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(var) A [ fx : �g ` x : � (where � � �)

(app)
A `M : �1 ! �2; A ` N : �1

A ` (MN) : �2

(abs)
Ax [ fx : �1g `M : �2
A ` (�xM) : �1 ! �2

(let)
A `M1 : �1; Ax [ fx : Gen(A; �1)g `M2 : �2

A ` (let x = M1 in M2) : �2

Figure 5: Typing rules of ML. Types in type environments are in S(1), and
derived types are in T0.

This equivalence follows immediately from results of Kfoury and Wells [17].
It implies the following useful result:

Lemma 7 If �s
2 . A `M : � and Gen(A; �)� �0, then �s

2 . A `M : �0.

2.4 ML

Many di�erent formulations of the ML type system have been studied; we
choose to present a syntax-directed version here, as in Clement et al. [4] or
Tofte [32].

The types of ML are the types T0, and the ML type schemes are the
types S(1). The terms of ML are the terms of the lambda calculus extended
with let-expressions :

M ::= x j (M1M2) j (�xM) j (let x = M1 inM2):

The judgments of ML are de�ned inductively by the rules of Figure 5. We
write ML . A `M : � if A `M : � is derivable from these rules, where types
in type environments are restricted to S(1), and derived types are restricted
to T0.

De�nition 8 An ML type � is a principal type for M in A if and only
if ML . A ` M : � , and for all ML types � 0, if ML . A ` M : � 0, then
Gen(A; �) � � 0.
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Theorem 9 (Principal types for ML) If M is typable by A, then there
exists a principal type for M in A.

Lemma 10 IfML . A `M : � , and Gen(A; �) � � 0, thenML . A `M : � 0.

2.5 Relationship of �s
2 and Is2

We now show that a term is typable in �s
2 if and only if it is typable in Is2.

The left to right implication is developed �rst.

De�nition 11
i) We de�ne a relation �1 between S(1) and T1 as follows. Suppose

� 2 S(1) and �1; : : : ; �n 2 T0 (n � 1). Then � �1 (
V
i2I �i) if and

only if � � �i for all i 2 I .

ii) We de�ne the relation �2 between S
0(2) and T2 inductively:

a) For any type variable t, t �2 t.

b) If � �1 �
0 and � �2 �

0, then (� ! �) �2 (�
0 ! �0).

Note that the relation �2 is monotonic in the argument of function types, in
contrast to the relation �2. We extend the relation �1 to type environments
as follows: A �1 A

0 if and only if x 2 dom(A) and A(x) �1 A
0(x) whenever

x 2 dom(A0). Note that A �1 (A0 + A00) if A �1 A0 and A �1 A00, and
A �1 A

0 if Ax �1 A
0.

Theorem 12 If �s
2 . A `M : � , then Is2 . A

0 `M : � 0, where A �1 A
0 and

� �2 �
0.

Proof: By induction on derivations.

i) M = x and �s
2 . A ` x : � follows by the �s

2 rule (var). Then we
must have A(x) � � .

Let A0 = fx : �g. Clearly Is2 . A
0 `M : � , A �1 A

0, and � �2 � .

ii) M = �xN , � = � ! �1, and �s
2 . A ` �xN : � ! �1 follows by the �s

2

rule (abs).

Then we must have

�s
2 . Ax [ fx : �g ` N : �1:

By induction, we have

Is2 . A
0 [ fx : �0g ` N : � 01;
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where Ax �1 A
0, � �1 �

0, and �1 �2 �
0
1. So by the Is2 rule (abs), we

have

Is2 . A
0 ` N : �0 ! � 01;

where A �1 A
0, and (� ! �1) �2 (�0 ! � 01), as desired.

iii) M = M1M2 and �s
2 . A ` M1M2 : � follows by the �s

2 rule (app).
Then we must have, for some �0 2 T0,

�s
2 . A `M1 : (8~t:�0)! �;

�s
2 . A `M2 : �0;

where the type variables ~t do not appear in FTV(A). Then by induc-
tion we have

Is2 . A
0
0 `M1 : (

^
i2I

�i)! � 0;

where A �1 A
0
0, � �2 �

0, and (8~t:�0) �1 (
V
i2I �i).

Then each �i is an instance of (8~t:�0), and therefore by Lemma 7,
�s
2 . A `M2 : �i for all i 2 I .

By induction we have for all i 2 I , Is2 . A
0
i ` M2 : �i, where A �1 A

0
i.

So if A0 = A0
0 +
P

i2I A
0
i, then A �1 A

0, and by weakening,

Is2 . A
0 `M1 : (

V
i2I �i)! � 0;

Is2 . A
0 `M2 : �i (8i 2 I):

Then by the Is2 rule (app) we have

Is2 . A
0 `M1M2 : �

0;

as desired.

2

We now show the other direction of the equivalence: any term typable
in Is2 is typable in �s

2.

Convention 13 In the remainder of this section we do not consider terms
to be identical modulo �-conversion, and we will assume the following con-
vention regarding the names of bound and free variables:

i) No variable is bound more than once.
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ii) The bound and free variables are disjoint.

This convention is necessary to make the following function well-de�ned:

De�nition 14 Let � denote the empty sequence. The function, act, that
maps terms to sequences of variables, is de�ned inductively by the following
rules.3

i) act(x) = �.

ii) If act(M) = x1; : : : ; xn then act(�yM) = y; x1; : : : ; xn.

iii) If act(M) = y; x1; : : : ; xn (n � 0) then act(MN) = x1; : : : ; xn.

iv) If act(M) = � then act(MN) = �.

De�nition 15

i) 
 is the rule

(�x(�yM))N ! �y((�xM)N):

ii) !
 is the compatible closure of 
.

iii) A 
-redex is any term matching the left-hand side of the rule 
. We
say M is a 
-normal form, or 
-nf, if no subterm of M is a 
-redex.

Note that by our convention on the distinct naming of variables, there is no
capture of variables in the 
 rule. We use the name \
" in accordance with
Kfoury and Wells [18]. See Barendregt [2] for a de�nition of \compatible."

Lemma 16

i) !
 is strongly normalizing.

ii) !
 satis�es the diamond property.

iii) 
-nf's are unique.

Proof:

i) The proof is similar to the proof of Lemma 5.5 from Kfoury and
Wells [17]:

3Our de�nition is identical to the de�nition of [12], but di�ers from [11].

15



Let appl(M) be the set of subterms of M that are applications, and
let

�(M) =
X

(M1M2)2appl(M)

max(0; jact(M1)j � 1):

If M !
 N , then �(M) = �(N)+1. Since for any M we have �(M) �
0, we can conclude that!
 is strongly normalizing. In fact, �(M) > 0
i� M contains a 
-redex, and M normalizes in exactly �(M) steps.

If jM j is the size (number of subterms) ofM , then clearly jappl(M)j �
jM j and jact(M)j � jM j. Thus �(M) � jM j2. Therefore normaliza-
tion of a term M takes O(jM j2) steps.

ii) This is a simple case analysis.

iii) This follows from (ii).

2

Lemma 16 justi�es the following de�nition:

De�nition 17 We write 
-nf(M) for the 
-nf of M .

Lemma 18 For D 2 fIs2;�
s
2g, the following hold:

i) D . A ` (�x(�yM))N : � i� D . A ` �y((�xM)N) : �.

ii) If M !
 N , then D . A `M : � i� D . A ` N : �.

iii) D . A `M : � i� D . A ` 
-nf(M) : �.

Proof:

i) Simple case analysis.

ii) Use (i) and induction on the de�nition of compatible.

iii) Use (ii) and induction on the length of rewriting.

2

Lemma 19 If act(M) = x1; : : : ; xn and Is2 . A ` M : �, then � is of the
form �1 ! � � � ! �n ! � , where � 2 T0.

Proof: By induction on the structure of M .
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i) If M = x, then n = 0 by the de�nition of act, and � 2 T0 by rule
(var).

ii) IfM = �x1N , then Is2 . A `M : � follows by rule (abs), and therefore
� is of the form �1 ! �0, where �1 2 T1.

Also we must have act(N) = x2; : : : ; xn (n � 1) and Is2 . A [ fx1 :
�1g ` N : �0. By induction �0 must be of the form �2 ! � � � ! �n ! � ,
where �2; : : : ; �n 2 T1 and � 2 T0.

iii) If M = M1M2, then Is2 . A ` M : � follows by rule (app), and
therefore we have Is2 . A `M1 : �0 ! �, where �0 2 T1.

We consider two cases. If act(M1) = y; x1; : : : ; xn for some variable
y, then by induction, � is of the form �1 ! � � � ! �n ! � , where
�1; : : : ; �n 2 T1 and � 2 T0.

Otherwise act(M1) = �, and therefore act(M) = �, so we only need
prove � 2 T0. And by induction, we have (�0 ! �) 2 T0, so � 2 T0.

2

Note 20 A similar lemma holds for �s
2, c.f. Kfoury et al. [12], Lemma 15.

Lemma 21 Suppose M is a 
-nf. Then

act(M) 6= � i� M = �yN for some y;N:

Proof: By induction on the structure of M . The cases M = x and M =
�yN are trivial, so assume M = M1M2. We must show act(M) = �.

By way of contradiction, assume that act(M) = x1; : : : ; xn (n � 1). By
the de�nition of act, we must have act(M1) = y; x1; : : : ; xn for some y.
Then act(M1) 6= �, so by induction we have M1 = �yM 0

1, and act(M
0
1) =

x1; : : : ; xn. Since n � 1, act(M 0
1) 6= �, and by induction M 0

1 = �x1M
00
1 . But

then M is a 
-redex, contradiction. 2

De�nition 22 We de�ne a mapping, ml, from terms to ML terms:

i) ml(x) = x.

ii) ml(�xM) = (�xml(M)).

iii) ml(M1M2) =

�
(let x =ml(M2) in ml(N)) if M1 = �xN ,
(ml(M1)ml(M2)) otherwise.
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De�nition 23

i) A generalization of a set T of simple types is a type � 2 S(1) such that
� � � for every � 2 T. A generalization � of T is the least common
generalization of T if �0 � � for any other generalization �0 of T.

ii) If (
V
i2I �i) 2 T1, we de�ne lcg(

V
i2I �i) to be the least common gen-

eralization of f�i j i 2 Ig. If �1, . . . , �n 2 T1 and � 2 T0, then

lcg(�1 ! � � � ! �n ! �) = lcg(�1)! � � � ! lcg(�n)! �:

The function lcg is extended to type environments in the usual way.

The use of \least" in the name \least common generalization" is consistent
with the relation `�'. Recall that the sense of `�' is opposite to that of our
other subtyping relations, so that \least" for `�' means \greatest" for the
other relations.

The concept of least common generalizations was developed by Plotkin
[26] and Reynolds [27]. They showed that any �nite nonempty set of simple
types has a least common generalization, and they gave an algorithm to
compute it.

Lemma 24 If M is a 
-nf and � 2 T0, then

i) Is2 . A `M : � implies ML . lcg(A) `ml(M) : �; and

ii) �s
2 . A `M : � if and only if ML . A `ml(M) : �.

Proof:

i) By induction on the structure of M .

a) The case M = x is trivial.

b) If M = �yN , then Is2 . A `M : � follows by the Is2 rule (abs), so
� must be of the form � ! �0 where �; �0 2 T0, and I

s
2 . A[ fy :

�g ` N : �0. Note that N is a 
-nf, so we can apply the induction
hypothesis to get

ML . lcg(A [ fy : �g) `ml(N) : �0:

Now � 2 T0, so lcg(A [ fy : �g) = lcg(A) [ fy : �g. Therefore
ML . lcg(A) [ fy : �g ` ml(N) : �0, so by the ML rule (abs),
ML . lcg(A) `ml(�yN) : � ! �0, as desired.
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c) IfM = (�yM1)M2, then our judgment must follow by the Is2 rules
(abs) and (app). Thus we have

Is2 . A [ fy : (
V
i2I �i)g `M1 : �;

(8i 2 I) Is2 . A `M2 : �i:

Let 8~t� = lcg(
V
i2I �i), where � 2 T0, and no ti appears in A.

By induction, we have

ML . lcg(A) [ fy : 8~t�g `ml(M1) : �;
(8i 2 I) ML . lcg(A) `ml(M2) : �i:

By the principal type property of ML, we have

ML . lcg(A) `ml(M2) : �:

Then since ml(M) = (let y =ml(M2) in ml(M1)), we have

ML . lcg(A) `ml(M) : �

by the ML rule (let).

d) If M = M1M2, where M1 is not an abstraction, then by the Is2
rule (app), we have for some �0,

Is2 . A `M1 : �
0 ! �;

Is2 . A `M2 : �
0:

M1 is a 
-nf and is not an abstraction, so by Lemma 21, we have
act(M1) = �. Then by Lemma 19, �0 ! � 2 T0, and therefore
�0 2 T0. M2 is also a 
-nf, so we may apply the induction
hypothesis to both judgments above, to get

ML . lcg(A) `ml(M1) : �0 ! �;

ML . lcg(A) `ml(M2) : �
0:

Then by the ML rule (app), we have

ML . lcg(A) `ml(M1M2) : �;

as desired.

ii) Similar, but easier.

2
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Note 25 The converse of Lemma 24(i) does not hold. For instance, if � =
t3 and A = fx : t1 ^ t2g, then lcg(A) = fx : 8t:tg, ml(xx) = xx, and
ML . fx : 8t:tg ` xx : t3, but the judgment fx : t1 ^ t2g ` xx : t3 cannot be
derived in Is2.

Theorem 26 If Is2 . A `M : �, then �s
2 . lcg(A) `M : lcg(�).

Proof: Suppose act(M) = x1; : : : ; xn. Then by Lemma 19, � is of the form
�1 ! � � � ! �n ! � , where � 2 T0, and by Lemma 21, the 
-nf of M is of
the form �x1 � � ��xnN , where N is a 
-nf. By Lemma 18(iii),

Is2 . A ` �x1 � � ��xnN : �:

This judgment must follow by n uses of the Is2 rule (abs), so we have

Is2 . A [ fx1 : �1; : : : ; xn : �ng ` N : �:

Then by Lemma 24, we have

�s
2 . lcg(A [ fx1 : �1; : : : ; xn : �ng) ` N : �:

By n uses of the �s
2 rule (abs), we have

�s
2 . lcg(A) ` �x1 � � ��xnN : lcg(�);

and by Lemma 18(iii), we have

�s
2 . lcg(A) `M : lcg(�):

2

Theorem 27 If M is a term of the pure lambda calculus, then M is typable
in Is2 if and only if M is typable in �s

2.
Therefore, typability in Is2 is DEXPTIME-complete.

Proof: The equivalence of Is2 and �s
2 typability follows from Theorems 12

and 26.
Kfoury and Tiuryn [12] show that �s

2 typability is polynomial time
equivalent to ML typability. ML typability was shown to be DEXPTIME-
complete independently by Kfoury et al. [15] and by Mairson [22]. 2

The equivalence of Theorem 27 has been shown independently by Yoko-
uchi [35].
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3 Type inference for Is2

We present the type inference algorithm for Is2 and a proof that it infers prin-
cipal pairs. The algorithm is not new: it was described brie
y in Leivant's
original paper [21], and was de�ned rigorously by van Bakel in his disser-
tation [33]. We include it here because the algorithm provides a way to
compare a variety of type systems based on rank 2 intersection types, and
because we will extend the algorithm in a later section.

The algorithm takes as input a termM , and produces a pair hA; �i such
that Is2 . A ` M : �. Moreover, the pair hA; �i is principal in the sense
that any other acceptable pair of M can be obtained from hA; �i by some
well-understood operations.

De�nition 28
i) We write A �1 A0 if x 2 dom(A) and A(x) �1 A0(x) for all x 2
dom(A0).

ii) The ordering � on (T1 type environment, T2 type) pairs is de�ned as
follows:

hA; �i � hA0; �0i if and only if A0 �1 A and � �2 �
0.

iii) A pair hA; �i is a principal pair for M if hA; �i 2 APIs
2
(M), and for

any other pair hA0; �0i 2 APIs
2
(M), there is a substitution S such that

ShA; �i � hA0; �0i.

Note that �1 and � are transitive, and A + A0 �1 A for all T1 type envi-
ronments A;A0.

3.1 Subtype satisfaction

In this section we give a decision procedure for one of our subtyping relations,
and show how to solve a more general problem, subtype satisfaction, that
we use in our type inference algorithm.

Up until now, we have relied on some syntactic conventions to simplify
our presentation, namely, that `^' is an associative, commutative, and idem-
potent operator. Part of the problem we are addressing here is how to decide
whether two types are equivalent under these assumptions. Therefore, in this
section, we do not rely on the syntactic conventions in any way.

Subtype satisfaction is a generalization of the well-known problem of
uni�cation, and the techniques we use here are based on those used to solve
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uni�cation. For more details, consult a survey on uni�cation [19, 20, 30, 10,
6, 31, 1]. One di�erence between uni�cation and our satisfaction problems is
that we work with types that go beyond simple types, but our substitutions
involve only simple types. This is not the typical case with uni�cation, and
it makes our problem easier to solve.

If S1; S2 are substitutions and V is a set of type variables, we say S1
and S2 are equivalent on V , written S1 =V S2, if S1t = S2t for every t 2 V .
We say S1 is more general than S2 on V , written S1 �V S2, if there is a
substitution S3 such that S2 =V S3S1. The relation �V is a partial order
modulo =V . We omit V when V = Tv. A substitution S is idempotent if
S = SS, or, equivalently, if dom(S)\ rng(S) = ?.

We de�ne the relation �2;1 between T2 and T1 to be the least relation
closed under the rule:

� If � �2 �i for all i 2 I , then � �2;1 (
V
i2I �i).

A �2;1-satisfaction problem is a pair 9~s:P , where P is a �nite set whose every
element is either: 1) an equality between simple types; or 2) an inequality
between a T2 type and a T1 type. When ~s is empty 9~s may be omitted.
We use � to range over �2;1-satisfaction problems.

A substitution S is a solution to 9~s:P if there is a substitution S 0 such
that S(t) = S 0(t) for all t 62 ~s, S0� �2;1 S

0� for all inequalities (� � �) 2 P ,
and S 0� = S0� for all equalities (� = �) 2 P . The (possibly empty) set of
solutions to a problem � is written Solutions(�). Two problems �1 and �2
are equivalent if Solutions(�1) = Solutions(�2).

De�nition 29

i) A substitution U is a most general solution to � if it satis�es the
following conditions.

a) U 2 Solutions(�).

b) If S 2 Solutions(�) then U �FTV(�) S.

c) U is idempotent.

d) dom(U) � FTV(�).

ii) We write MGS(�) for the (possibly empty) set of most general solu-
tions to a �2;1-satisfaction problem �.

We require the last two conditions on most general solutions for technical
convenience only. We could relax the de�nition by eliminating those condi-
tions; but any � has a solution under the relaxed de�nition if and only if it
has a solution under our de�nition.

22



Sometimes it is useful to ensure that a most general solution does not
interfere with a set of \protected" variables. For any setW of type variables,
we say U is a most general solution to � away from W if U 2MGS(�) and
W \ rng(U) = ?, and we write MGS(�)[W ] for the (possibly empty) set
of most general solutions to � away from W .

Lemma 30 If U 2MGS(�)[W ] and S 2 Solutions(�), then U �W[FTV(�)

S.

Proof: Since U �FTV(�) S, there is some R such that RU =FTV(�) S.
De�ne

R0(t) =

�
R(t) if t 2 rng(U);
S(t) otherwise:

If t 2 FTV(�), then R0(U(t)) = R(U(t)) = S(t). And if t 2 W � FTV(�),
then t 62 (dom(�)[ rng(�)), so R0(U(t)) = R0(t) = S(t). 2

A uni�cation problem is a subtype satisfaction problem involving only
equalities. Algorithms for solving uni�cation problems are well known; in
particular, we have the following theorem.

Theorem 31 Let � be a uni�cation problem and W be a �nite set of type
variables.

i) Solutions(�) = ? i� MGS(�) = ? i� MGS(�)[W ] = ?.

ii) There is an algorithm that decides whether � has a solution, and, if
so, returns an element of MGS(�)[W ].

Proof: See for example Snyder [31], Lemma 3.3.11. 2

Theorem 32 Every �2;1-satisfaction problem is equivalent to a uni�cation
problem, and moreover, there is an algorithm that transforms every �2;1-
satisfaction problem into an equivalent uni�cation problem.

Corollary 33 Let � be a �2;1-satisfaction problem and W be a �nite set of
type variables.

i) Solutions(�) = ? i� MGS(�) = ? i� MGS(�)[W ] = ?.

ii) There is an algorithm that decides whether � has a solution, and, if
so, returns an element of MGS(�)[W ].
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(�1 ! �2) � t ) 9t1; t2:ft1 � �1; �2 � t2; t = t1 ! t2g
if t1; t2 are fresh

(�1 ! �2) � (�1 ! �2) ) f�1 � �1; �2 � �2g

� � (�1 ^ �2) ) f� � �1; � � �2g

t � � ) ft = �g
if � is a simple type

Figure 6: Transformational rules for �2;1-satisfaction problems

We will prove Theorem 32 by giving an algorithm that transforms any
�2;1-satisfaction problem into an equivalent uni�cation problem. Corol-
lary 33 follows by combining the transformation with any uni�cation algo-
rithm.

Our transformation is de�ned by rules of the form

� � � ) 9~t:P:

The rules may need to introduce fresh type variables, that is, type variables
that do not appear on the left-hand side. These variables will appear in
the variables ~t of the right-hand side (but they are not the only source of
variables in ~t).

The rules are used to de�ne a rewrite relation on problems:

� � � ) 9~t:P

9~s:P 0 ] f� � �g ) 9~s ] ~t:P 0 [ P

The operator `]' is disjoint union; on the right of the consequent, it means
that the variables ~t must be fresh (this can always be achieved by renaming).

The rules for transforming a �2;1-satisfaction problem into a uni�cation
problem are given in Figure 6.

Proof of Theorem 32: We show that the rules of Figure 6 constitute an
algorithm for converting any �2;1-satisfaction problem into an equivalent
uni�cation problem.

First, note that every rule transforms a �2;1-satisfaction problem into
another �2;1-satisfaction problem (equalities are between simple types, in-
equalities are between T2 and T1 types).

24



Second, note that each rule preserves the set of solutions, so that each
application of a rule transforms a problem into an equivalent problem.

Third, note that repeated application of these rules must halt: every
rule reduces the number of type constructors (`!' or `^') in inequalities or
reduces the number of inequalities.

Finally, note that a normal form contains no inequalities, and is therefore
a uni�cation problem. 2

Theorem 34 The subtyping relation �2;1 is decidable.

Proof: To see whether � �2;1 � , compute U 2 MGS(f� � �g) and check
to see whether U is the identity substitution. 2

Decision procedures for the other subtyping relations can be obtained in
a similar way.

Because we so often want to ensure that U 2MGS(�) is chosen \away"
from a set of type variables, we adopt the following convention.

Convention 35 Whenever U 2MGS(�) occurs in any mathematical con-
text, we assume that U is chosen so that it does not interfere with \current"
type variables, that is, U 2 MGS(�)[W ] where W [ FTV(�) is the set of
type variables present in the context.

3.2 Type inference

De�nition 36 For any term M , we de�ne the set PPIs
2
(M) of pairs by

induction:

i) If M = x, then for any type variable t, hfx : tg; ti 2 PPIs
2
(x).

ii) If M = �xN , and hA; �i 2 PPIs
2
(N), then:

a) If x 62 dom(A), and t is a type variable not appearing in hA; �i,
then hA; t! �i 2 PPIs

2
(�xN).

b) If x 2 dom(A), then hAx; A(x)! �i 2 PPIs
2
(�xN).

iii) If M = M1M2, then:

a) If hA1; ti 2 PPIs
2
(M1) and hA2; �2i 2 PPIs

2
(M2) are disjoint, and

U 2MGS(ft = t1 ! t2; �2 � t1g) where t1; t2 are fresh, then

UhA1 +A2; t2i 2 PPIs
2
(M1M2):
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b) If hA1; (
V
i2I �i)! �1i 2 PPIs

2
(M1), and hAi; �ii 2 PPIs

2
(M2) for

all i 2 I , where all pairs are chosen disjoint, and U 2MGS(f�i �
�i j i 2 Ig), then

UhA1 +
X
i2I

Ai; �1i 2 PPIs
2
(M1M2):

The following lemma establishes that the elements of PPIs
2
(M) are just

trivial variants of each other. Therefore, the requirement of disjointness
used in the de�nition of PPIs

2
is easily satis�ed, and De�nition 36 can be

adapted to a type inference algorithm.

Lemma 37
i) If hA; �i 2 PPIs

2
(M), then x 2 dom(A) if and only if x is free in M .

ii) Suppose hA1; �1i 2 PPIs
2
(M). Then hA2; �2i 2 PPIs

2
(M) if and only if

there is a bijection R of type variables such that RhA1; �1i = hA2; �2i.

Proof: An easy induction on De�nition 36. 2

Theorem 38 There is an algorithm that decides, for any M , whether the
set PPIs

2
(M) is empty; and furthermore, if PPIs

2
(M) is not empty, it pro-

duces a member of PPIs
2
(M).

Proof: Just follow the rules of De�nition 36, generating \fresh" type vari-
ables as necessary, and use the algorithm of Corollary 33 to computeMGS.
2

Example 39 We show how the algorithm �nds the principal pair of (�x:xx).

i) PPIs
2
(x) produces a pair hfx : t1g; t1i.

ii) PPIs
2
(x) (again) produces a pair hfx : t2g; t2i.

iii) To calculate PPIs
2
(xx), we �nd a most general solution to

ft2 � t3; t1 = t3 ! t4g;

such as ft2 := t3; t1 := t3 ! t4g. Then hfx : t3 ^ (t3 ! t4)g; t4i 2
PPIs

2
(xx).

iv) Finally, PPIs
2
(�x:xx) produces h?; t3 ^ (t3 ! t4)! t4i.
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We now establish the soundness of PPIs
2
.

Theorem 40 If hA; �i 2 PPIs
2
(M), then hA; �i 2 APIs

2
(M).

Proof: By induction on the de�nition of PPIs
2
(M).

i) If M = x, then hA; �i = hfx : tg; ti, and we have hA; �i 2 APIs
2
(x) by

rule (var).

ii) If M = �xN , then by Lemma 37(i) we have the following two cases:

a) x is not free in N , and � = t! �0, where hA; �0i 2 PPIs
2
(N).

By induction and weakening, hA [ fx : tg; �0i 2 APIs
2
(N) (note

that A [ fx : tg is well-formed by Lemma 37(i)).

So by rule (abs), hA; t! �0i = hA; �i 2 APIs
2
(�xN).

b) x is free in N and hA; �i = hA0
x; A

0(x)! �0i, where hA0; �0i 2
PPIs

2
(N).

By induction hA0; �0i 2 APIs
2
(N), so hA; �i 2 APIs

2
(�xN) by

rule (abs).

iii) If M = M1M2, then one of the following cases holds:

a) hA; �i = UhA1 +A2; t2i, where hA1; ti 2 PPIs
2
(M1), hA2; �2i 2

PPIs
2
(M2), and U 2MGS(ft = t1 ! t2; �2 � t1g).

Then by induction, weakening, and substitutivity,

UhA1 +A2; ti 2 APIs
2
(M1);

UhA2 +A2; �2i 2 APIs
2
(M2):

Since U�2 �2 Ut1, by Lemma 2(ii) we have U�2 = Ut1. And
Ut = (Ut1)! (Ut2), so by rule (app) we have UhA1 +A2; t2i 2
APIs

2
(M).

b) hA; �i = UhA1 +
P

i2I Ai; �1i, where hAi; �ii 2 PPIs
2
(M2) for all

i 2 I , hA1; (
V
i2I �i)! �1i 2 PPIs

2
(M1), and U 2 MGS(f�i �

�i j i 2 Ig).

Then by induction, weakening, and substitutivity,

UhA1 +
P

i2I Ai; (
V
i2I �i)! �1i 2 APIs

2
(M1);

UhA1 +
P

i2I Ai; �ii 2 APIs
2
(M2) (8i 2 I):

By Lemma 2(ii) and the fact that U�i �2 U�i, we have U�i =
U�i. Then by (app), UhA1 +

P
i2I Ai; �1i 2 APIs

2
(M). 2
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Theorem 41 (Principal pairs for Is2) If hA; �i 2 APIs
2
(M), then there is

a pair hA0; �0i 2 PPIs
2
(M) and a substitution S such that ShA0; �0i � hA; �i.

Proof: By cases on the structure of M .

i) IfM = x, then hA; �i 2 APIs
2
(M) by rule (var), and therefore, A(x) =

(
V
i2I �i) and � = �i0 2 T0 for some i0 2 I .

For any t, hfx : tg; ti 2 PPIs
2
(M). Then ft := �g is a well-formed

substitution and

ft := �ghfx : tg; ti = hfx : �g; �i � hA; �i:

ii) If M = �xN , then by the de�nition of Is2, � must be of the form
�1 ! �2, and hAx [ fx : �1g; �2i 2 APIs

2
(N). By induction, there is a

substitution S and pair hA0; �02i 2 PPIs
2
(N) such that

ShA0; �02i � hAx [ fx : �1g; �2i: (1)

We consider two cases.

a) If x 62 dom(A0), then for any fresh type variable t, hA0; t! �02i 2
PPIs

2
(�xN).

Note that �1 is of the form (
V
i2I �i), and therefore, we can pick

�01 2 T0 such that �1 �1 �
0
1 (choose any �i). Then let S0 = ft :=

�01g [ S. By (1) and the de�nition of �,

S0hA0; t! �02i = hSA0; �01 ! S�02i � hAx; �1 ! �2i:

Since A �1 Ax, we have S 0hA0; t! �02i � hA; �1 ! �2i, as de-
sired.

b) If x 2 dom(A0), then hA0
x; A

0(x)! �02i 2 PPIs
2
(�xN). Then

by (1) and the de�nition of �,

ShA0
x; A

0(x)! �02i � hAx; �1 ! �2i;

and since A �1 Ax, we have ShA
0
x; A

0(x)! �02i � hA; �1 ! �2i,
as desired.

iii) If M = M1M2, then by the de�nition of Is2, hA; (
V
i2I �i)! �i 2

APIs
2
(M1) and hA; �ii 2 APIs

2
(M2) for all i 2 I .

By induction, PPIs
2
(M1) is nonempty, and by Lemma 37(ii), it is suf-

�cient to consider the following cases on the structure of pairs in
PPIs

2
(M1).
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a) hA1; ti 2 PPIs
2
(M1). By induction, there is a substitution S1 such

that

S1hA1; ti � hA; (
^
i2I

�i)! �i:

By the de�nition of �2, S1t = �i ! �0 for some i 2 I and �0 2 T0.

Then by induction and Lemma 37(ii), there is a disjoint pair
hA2; �i 2 PPIs

2
(M2) and substitution S2 such that

S2hA2; �i � hA; �ii:

Let � = ft = t1 ! t2; � � t1g, where t1; t2 are fresh. Then
S = S1 [ S2 [ ft1 := �i; t2 := �0g is a solution to �.

Pick U 2MGS(�). Then UhA1 +A2; t2i 2 PPIs
2
(M1M2).

By Convention 35, there exists an R such that RUhA1 +A2; t2i =
ShA1 + A2; t2i. And

ShA1 +A2; t2i = hS1A1 + S2A2; �
0i � hA; �i;

as desired.

b) hA1; (
V
j2J �

0
j)! �0i 2 PPIs

2
(M1).

By induction there is a substitution S1 such that

S1hA1; (
^
j2J

�0j)! �0i � hA; (
^
i2I

�i)! �i:

By the de�nition of �2, fS1�
0
j j j 2 Jg � f�i j i 2 Ig, so for all

j 2 J there is an ij 2 I such that S1�0j = �ij .

By induction and Lemma 37(ii), for all j 2 J there are disjoint
pairs hAj ; �ji 2 PPIs

2
(M2) and substitutions Sj such that

SjhAj ; �ji � hA; �iji:

Let � = f�j � �0j j j 2 Jg. Then S = S1[ (
S
j2J Sj) is a solution

to �: S�j = Sj�j �2 �ij = S1�
0
j = S�0j .

Pick U 2MGS(�). Then

UhA1 +
X
j2J

Aj ; �
0i 2 PPIs

2
(M1M2):
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By Convention 35, there exists an R such that

RUhA1 +
X
j2J

Aj ; �
0i = ShA1 +

X
j2J

Aj ; �
0i:

And

ShA1 +
X
j2J

Aj ; �
0i = hS1A1 +

X
j2J

SjAj ; S1�
0i � hA; �i;

as desired.

2

4 Other systems of rank 2 intersection types

4.1 A restriction of Is2

Van Bakel [33] de�ned a rank 2 intersection type system that is a slight
restriction of our system Is2. A version of his rules is presented below.

(var) fx : �g ` x : � (where � 2 T0)

(abs)
Ax [ fx : �1g `M : �2
Ax ` (�xM) : �1 ! �2

(app)
A `M : (

V
i2I �i)! �; (8i 2 I) Ai ` N : �i

A+
P

i2I Ai ` (MN) : �

We write Ivb2 . A ` M : � if the judgment A ` M : � follows by these
rules, under the following restrictions: environment types are in T1; derived
types are in T2; and in every judgment A `M : � , the type environment A
contains only assumptions actually used in the derivation of A ` M : � .
For example, the rule (var) has been intentionally restricted to rule out a
judgment such as

fx : �1 ^ �2g ` x : �1;

in which the type �2 assumed for x is not used. Similarly, fx : �1; y : �2g `
x : �1 is not derivable because the assumption y : �2 is not used. The exact
relation between Ivb2 and Is2 is summed up in the following lemma.

Theorem 42 (Comparison of Ivb2 and Is2)
i) If Ivb2 . A `M : �, then Is2 . A `M : �. The converse does not hold.
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ii) A term M is typable in Ivb2 if and only if it is typable in Is2.

Proof:

i) Just note that the Ivb2 rule (var) is a special case of the Is2 rule (var),
that the Ivb2 rule (abs) is identical to the Is2 rule (abs), and that the
Ivb2 rule (app) follows from the Is2 rule (abs) and weakening.

The examples above show that the converse does not hold.

ii) This follows because the de�nition of principal pair in van Bakel's
system is identical to our own.

2

4.2 An extension of Is2

A natural extension of Is2 is obtained by adding the rule of subsumption to
the rules of Is2:

(sub)
A `M : �

A `M : �
(where � �2 �)

We write I2 . A `M : � if the judgment A `M : � follows by the rules of Is2
plus (sub), with types appearing in type environments restricted to T1, and
derived types restricted to T2.

Clearly, every judgment of Is2 is a judgment of I2. The converse does not
hold; for example, the judgment

fx : � ! �g ` x : (� ^ �0)! �

is derivable in I2 for any � 6= �0 2 T0, but is not derivable in Is2.
I2 has principal pairs, and indeed, they are identical to the principal

pairs of Is2 (the proof is a simple extension of the proof of Theorem 41). An
immediate consequence is that the terms typable in I2 are exactly the same
as the terms typable in Is2.

In summary:

Theorem 43 (Comparison of I2 and Is2)
i) If Is2 . A `M : �, then I2 . A `M : �. The converse does not hold.

ii) A term M is typable in I2 if and only if it is typable in Is2.

Although it does not type any more terms than Is2, I2 has other advantages
over Is2.
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Example 44 The acceptable pairs of Is2 are not closed under the opera-
tion �:

Is2 . fx : s! tg ` x : s! t;

and

hfx : s! tg; s! ti � hfx : s! tg; (s ^ t)! ti;

but the judgment
fx : s! tg ` x : (s ^ t)! t

is not derivable in Is2.

On the other hand, I2 is closed under �:

Lemma 45 (Weakening for I2) If I2 . A ` M : � and hA; �i � hA0; �0i,
then I2 . A

0 `M : �0.

For this reason, we prefer I2 to either Ivb2 or Is2. However, it was still useful
to develop Is2. In particular, the example above shows that Lemma 19 does
not hold for I2; it was convenient to have Lemma 19 for the proof of the
equivalence of typability with �s

2.

5 Combining intersections and quanti�cation

5.1 The system P2

We now describe a type system that combines aspects of rank 2 intersection
types and rank 2 polymorphic types. The system is called P2, as it is the
rank 2 subset of a type system P (described elsewhere).

The types of the system are the rank 2 intersection types extended with
top-level quanti�ers:

T82 = T2 [ f(8t�) j � 2 T82g:

In order to simplify the de�nition of subtyping, we consider T82 types
syntactically equal modulo renaming of bound type variables, reordering of
adjacent quanti�ers, and elimination of unnecessary quanti�ers. When a
T82 type is written in the form 8~s�, we assume � 2 T2.

De�nition 46

i) The relation �82 is the least partial order on T82 closed under the
following rules:
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a) If � �2 � , then � �82 � .

b) If � 2 T0, then (8t�) �82 ft := �g�.

c) If � �82 � and t is not free in �, then � �82 (8t�).

ii) The relation �82;1 between T82 and T1 is the least relation closed
under the rule:

a) If � �82 �i for all i 2 I , then � �82;1 (
V
i2I �i).

The rules for �82 express the intuition that a type is a subtype of its in-
stances. They are equivalent to the following rule, similar to ML's notion of
generic instance:

� If f~s := ~�g� �2 � , where ~� is a vector of simple types, and the type
variables ~t are not free in (8~s�), then 8~s� �82 8~t� .

Note that we only allow instantiation of simple types. This ensures that
instantiation does not take us beyond rank 2. It also has less desirable
implications, e.g., (8t:t) is not a least type in the ordering �82: (8t:t) 6�82

(s1 ^ (s1 ! s2))! s2.
The relation �82;1 is not a partial order; it is not even re
exive. This is

because it relates types \across rank." Note that in a comparison

(8t�) �82;1 (
^
i2I

�i);

the variable t may be instantiated di�erently for each �i.
Some basic properties of �82 and �82;1 are summarized in the following

lemma.

Lemma 47
i) If �; � 2 T0, then � �82 � i� � �82;1 � i� � = � .

ii) If �; � 2 T2, then � �82 � i� � �2 � .

iii) If � �82 � , then (8t�) �82 (8t�).

iv) If � 2 T2 and � 2 T0, then 8~t� �82 � i� for some substitution S with

dom(S) � ~t, we have S� = � .

v) For any substitution S and types �; � 2 T82, if S� �82 � , then

S(8t�) �82 � .

vi) For any substitution S, types �; � 2 T82, and type environment A, if

S� �82 � , then S(Gen(A; �))�82 � .
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(var) fx : (
V
i2I �i)g ` x : �i0 (where i0 2 I)

(abs)
A [ fx : �g `M : �

A ` (�xM) : � ! �

(app)
A `M : (

V
i2I �i)! �; (8i 2 I) A ` N : �i

A ` (MN) : �

(gen)
A `M : �

A `M : 8t�
(where t 62 FTV(A))

(sub)
A `M : �

A `M : �
(where � �82 �)

(add-hyp)
A `M : �

A [ fx : �g `M : �

Figure 7: Typing rules of P2. Types in type environments are in T1, and
derived types are in T82.

vii) If �1 �82 �2 �82;1 �3 �1 �4, then �1 �82;1 �4.

The typing rules of the system are presented in Figure 7. We write
P2 . A ` M : � if the judgment A ` M : � follows by these rules, with
types appearing in type environments restricted to T1, and derived types
restricted to T82.

The rules di�er from the rules of I2 in two respects. First, we have added
the rule (gen) so that we can derive quanti�ed types, and �82 is used in
place of �2 in the rule (sub) so that the quanti�ers can be instantiated.
Second, we have added the rule (add-hyp), which was a derived rule in
all of our previous type systems. The addition of (add-hyp) will simplify
some subsequent de�nitions, and also allows us to weaken the rules (var)
and (abs) slightly. The old (var) and (abs) are derivable in P2, so P2

extends I2:

Lemma 48 If I2 . A `M : �, then P2 . A `M : �.

In fact, a stronger connection can be shown: a term is typable in one
system if and only if it is typable in the other.
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Theorem 49 (Comparison of P2 and I2) P2 . A ` M : 8~t� for some ~t
if and only if I2 . A `M : �.

Proof: The right-to-left direction follows by Lemma 48. The left-to-right
direction is proved by induction on derivations; the only non-trivial case is
(sub), which can be shown as follows.

If P2 . A `M : 8~t� follows by rule (sub), then we must have a shorter
derivation of

P2 . A `M : 8~s�;

and (8~s�) �82 (8~t�). We must show I2 . A `M : �.
By induction, I2 . A `M : � . Furthermore, by the de�nition of �82, for

some sequence ~� of simple types, we have f~s := ~�g� �2 �. We may assume
that the type variables ~s do not appear in A. Then by substitutivity for I2,

I2 . A `M : f~s := ~�g�;

and by the I2 rule (sub), we have I2 . A `M : �, as desired. 2

The ordering � of De�nition 28 is extended to pairs with T82 types as
follows:

hA; �i � hA0; �0i if and only if A0 �1 A and � �82 �
0.

Lemma 50 (Weakening for P2) If P2 . A `M : � and hA; �i � hA0; �0i,
then P2 . A

0 `M : �0.

Lemma 51 (Substitutivity for P2) If P2 . A `M : �, then P2 . SA `
M : S� for any substitution S.

5.2 Extending subtype satisfaction

In order to perform type inference for P2, we will need to solve problems
that generalize the �2;1-satisfaction problems of x3.1.

A �82;1-satisfaction problem � is a pair 9~s:P , where P is a �nite set
whose every element is either: 1) an equality between simple types; or 2)
an inequality between a T82 type and a T1 type. A substitution S is a
solution to 9~s:P if there is a substitution S0 such that S(t) = S0(t) for all
t 62 ~s, S0� �82;1 S

0� for all inequalities (� � �) 2 P , and S0� = S0� for all
equalities (� = �) 2 P .

Note that any �2;1-satisfaction problem is a �82;1-satisfaction problem
with the same set of solutions. Therefore we abuse notation and write
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Solutions(�), MGS(�), and MGS(�)[W ] for the solutions, most general
solutions, and most general solutions away from W of a �82;1-satisfaction
problem �.

Similarly, �82;1-satisfaction problems can be solved by extending the
transformational algorithm of Figure 6 by the following rule:

(8t�) � � ) 9tf� � �g
if � is not a ^-type, and t is not free in �

Theorem 52 Every �82;1-satisfaction problem is equivalent to a uni�cation
problem, and moreover, there is an algorithm that transforms every �82;1-
satisfaction problem into an equivalent uni�cation problem.

Proof: We show that the rules of Figure 6, augmented by the rule above,
constitute an algorithm for converting any �82;1-satisfaction problem into
an equivalent uni�cation problem (equalities are between simple types, in-
equalities are between T82 and T1 types).

First, note that every rule transforms a �82;1-satisfaction problem into
another �82;1-satisfaction problem.

Second, note that each rule preserves the set of solutions, so that each
application of a rule transforms a problem into an equivalent problem.

Third, note that repeated application of these rules must halt: every rule
reduces the number of type constructors (`!', `^', or `8') in inequalities or
reduces the number of inequalities.

Finally, note that a normal form contains no inequalities, and is therefore
a uni�cation problem. 2

Corollary 53 Let � be a �82;1-satisfaction problem and W be a �nite set
of type variables.

i) Solutions(�) = ? i� MGS(�) = ? i� MGS(�)[W ] = ?.

ii) There is an algorithm that decides whether � has a solution, and, if
so, returns an element of MGS(�)[W ].

Theorem 54 The subtyping relation �82;1 is decidable.

Proof: To see whether � �82;1 � , compute U 2MGS(f� � �g) and check
to see whether U is the identity substitution. 2
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5.3 Type inference for P2

De�nition 55 For any term M , we de�ne the set PPP2
(M) by induction

on M .

i) If M = x, then hfx : tg; ti 2 PPP2
(x) for any type variable t.

ii) If M = �xN , and hA; 8~s�i 2 PPP2
(N), where the type variables ~s are

distinct from all other type variables, then:

a) If x 62 dom(A), and t is a fresh type variable, then

hA; 8t~s(t! �)i 2 PPP2
(�xN):

b) If x 2 dom(A), then hAx;Gen(Ax; A(x)! �)i 2 PPP2
(�xN).

iii) If M = M1M2, and hA1; 8~s�1i 2 PPP2
(M1), then:

a) If �1 = t (a type variable), t1 and t2 are fresh type variables, the
type variables of hA2; �2i 2 PPP2

(M2) are fresh, U 2MGS(f�2 �
t1; t = t1 ! t2g), and A = U(A1 + A2), then

hA;Gen(A;Ut2)i 2 PPP2
(M):

b) If �1 = (
V
i2I �i) ! � , (8i 2 I) the type variables of hAi; �ii 2

PPP2
(M2) are fresh, U 2 MGS(f�i � �i j i 2 Ig), and A =

U(A1 +
P

i2I Ai), then

hA;Gen(A;U�)i 2 PPP2
(M):

Just as with Is2, the elements of PPP2
(M) are trivial variants of each

other, so De�nition 55 can easily be adapted to a type inference algorithm.

Lemma 56
i) If hA; �i 2 PPP2

(M), then x 2 dom(A) if and only if x is free in M .

ii) Suppose hA1; �1i 2 PPP2
(M). Then hA2; �2i 2 PPP2

(M) if and only if

there is a bijection R of type variables such that RhA1; �1i = hA2; �2i.

Proof: An easy induction on De�nition 55. 2

Theorem 57 There is an algorithm that decides, for any M , whether the
set PPP2

(M) is empty; and furthermore, if PPP2
(M) is not empty, it pro-

duces a member of PPP2
(M).
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Proof: Just follow the rules of De�nition 55, generating \fresh" type vari-
ables as necessary, and use the algorithm of Corollary 53 to computeMGS.
2

Theorem 58 If hA; �i 2 PPP2
(M), then hA; �i 2 APP2

(M).

Proof: By induction on the de�nition of PPP2
(M).

i) If M = x, then hA; �i = hfx : tg; ti for some type variable t.

Then we have hA; �i 2 APP2
(x) by rule (var).

ii) If M = �xN , then by Lemma 56(i) we must consider two cases:

a) It x is not free in N , then hA; 8~s�0i 2 PPP2
(N) for some �0, and

� = 8t~s(t! �0) for some fresh type variable t.

By induction, hA; 8~s�0i 2 APP2
(N), and by weakening,

hA [ fx : tg; �0i 2 APP2
(N):

Note that A [ fx : tg is well-formed by Lemma 56(i).

By rule (abs), hA; t! �0i 2 APP2
(�xN), and by (gen),

hA; 8t~s(t! �0)i = hA; �i 2 APP2
(�xN):

b) If x is free in N , then hA; �i = hA0
x;Gen(A

0
x; A

0(x)! �0)i, where
hA0; 8~s�0i 2 PPP2

(N).

By induction and rule (sub), hA0; �0i 2 APP2
(N), so by rule (abs),

hA0
x; A

0(x)! �0i 2 APP2
(�xN). Then by (gen),

hA0
x;Gen(A

0
x; A

0(x)! �0)i = hA; �i 2 APP2
(�xN):

iii) If M = M1M2, then we have hA1; 8~s�1i 2 PPP2
(M1). By induction,

hA1; 8~s�1i 2 APP2
(M1), and by (sub), hA1; �1i 2 APP2

(M1).

a) If �1 is a type variable t, then we must have a pair hA2; �2i 2
PPP2

(M2) with fresh type variables, A = U(A1 + A2) and � =
Gen(A;Ut2), where U 2 MGS(f�2 � t1; t = t1 ! t2g) for fresh
type variables t1 and t2.

By induction, hA2; �2i 2 APP2
(M2). By substitutivity,

UhA1; �1i = hUA1; (Ut1)! (Ut2)i 2 APP2
(M1)
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and

UhA2; �2i = hUA2; U�2i 2 APP2
(M2):

By weakening,

hUA1 + UA2; (Ut1)! (Ut2)i 2 APP2
(M1)

and

hUA1 + UA2; Ut1i 2 APP2
(M2):

Then by rule (app) we have

hUA1 + UA2; Ut2i = hA;Ut2i 2 APP2
(M1M2);

and by rule (gen),

hA;Gen(A;Ut2)i = hA; �i 2 APP2
(M1M2):

b) If �1 = (
V
i2I �i)! � , then we must have pairs hAi; �ii 2 PPP2

(M2)
with fresh type variables, U 2 MGSf�i � �i j i 2 Ig, A =
U(A1 +

P
i2I Ai), and � = Gen(A;U�).

By induction and substitutivity, hUAi; U�ii 2 APP2
(M2) for all

i 2 I , and by substitutivity we have

hUA1; U�1i = hUA1; (
^
i2I

U�i)! U�i 2 APP2
(M1):

By weakening, hA; (
V
i2I U�i)! U�i 2 APP2

(M1) and hA;U�ii 2
APP2

(M2) for all i 2 I .

Then by rules (app) and (gen) we have

hA;Gen(UA;U�)i = hA; �i 2 APP2
(M):

2

Theorem 59 (Principal pairs for P2) If hA; �i 2 APP2
(M), then there

is a pair hA0; �0i 2 PPP2
(M) and a substitution S such that ShA0; �0i �

hA; �i.

Proof: By induction on the de�nition of APP2
(M).
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i) If hA; �i 2 APP2
(M) by rule (var), then M = x for some variable x,

A(x) = (
V
i2I �i), and � = �i0 2 T0 for some i0 2 I .

By the de�nition of PPP2
, hfx : tg; ti 2 PPP2

(M), where t is a fresh
type variable.

Then ft := �g is a well-formed substitution and

ft := �ghfx : tg; ti = hfx : �g; �i � hA; �i:

ii) If hA; �i 2 APP2
(M) by rule (abs), then M = �xN , � is of the form

�1 ! �2, and hA [ fx : �1g; �2i 2 APP2
(N).

By induction, there is a substitution S0 and pair hA0; 8~s�02i 2 PPP2
(N)

such that
S0hA0; 8~s�02i � hA[ fx : �1g; �2i: (2)

a) If x 62 dom(A0), then for any fresh type variable t,

hA0; 8t~s(t! �02)i 2 PPP2
(�xN):

It remains to show that there is a substitution S such that

ShA0; 8t~s(t! �02)i � hA; �i:

Just let S = S0. By (2), we have A �1 S0A0, so we only need
show

S0(8t~s(t! �02)) �82 �1 ! �2:

We can assume t; ~s are fresh, so that

S0(8t~s(t! �02)) = 8t~s(t! S0�02):

And by (2),

ft := �1g8~s(t! S0�02) = 8~s(�1 ! S0�02) �82 �1 ! �2;

so by the de�nition of �82, S
0(8t~s(t ! �02)) �82 �1 ! �2 as

desired.

b) If x 2 dom(A0), then hA0
x;Gen(A

0
x; A

0(x)! �02)i 2 PPP2
(�xN).

Then by (2) and the de�nition of �,

S0hA0
x;Gen(A

0
x; A

0(x)! �02)i � hA; �1 ! �2i;

as desired.
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iii) If hA; �i 2 APP2
(M) by rule (app), then M = M1M2, and we have

hA; (
V
i2I �i)! �i 2 APP2

(M1) and hA; �ii 2 APP2
(M2) for all i 2 I .

By induction, PPP2
(M1) is nonempty, and by Lemma 56(ii), it is

su�cient to consider the following cases on the structure of pairs in
PPP2

(M1).

a) hA1; 8~sti 2 PPP2
(M1).

We assume that the type variables ~s are fresh, so by induction
and the de�nition of �82, there is a substitution S1 such that

S1hA1; ti � hA; (
^
i2I

�i)! �i:

By the de�nition of �82, S1t = (�i0 ! �0) for some i0 2 I and
�0 2 T0 with �0 �82 �.

By induction and Lemma 56(ii), there is a disjoint pair hA2; �i 2
PPP2

(M2) and substitution S2 such that

S2hA2; �i � hA; �i0i:

Let � = f � � t1; t = t1 ! t2 g, where t1; t2 are fresh. Note that
� has a solution, S = S1 [ S2 [ ft1 := �i0 ; t2 := �0g. Therefore,
we may pick U 2MGS(�) and let A0 = U(A1 +A2), so that

hA0;Gen(A0; Ut2)i 2 PPP2
(M1M2):

By Convention 35, there exists an R such that RUt2 = St2 =
�0 �82 �, and

A �1 S1A1 + S2A2 = S(A1 +A2) = RU(A1 +A2) = RA0:

By Lemma 47(vi), R(Gen(Ut2)) �82 �, so

RhA0;Gen(A0; Ut2)i � hA; �i;

as desired.

b) hA1; 8~s(
V
j2J �

0
j)! �0i 2 PPP2

(M1).

We assume that the type variables ~s are fresh, so by induction
and the de�nition of �82, there is a substitution S1 such that

S1hA1; (
^
j2J

�0j)! �0i � hA; (
^
i2I

�i)! �i:
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Then fS1�
0
j j j 2 Jg � f�i j i 2 Ig, so for all j 2 J there is an

ij 2 I such that S1�
0
j = �ij .

By induction and Lemma 56(ii), for all j 2 J there are disjoint
pairs hAj ; �ji 2 PPP2

(M2) and substitutions Sj such that

SjhAj ; �ji � hA; �iji:

Let � = f�j � �0j j j 2 Jg. Then S = S1[ (
S
j2J Sj) is a solution

to �: S�j = Sj�j �2 �ij = S1�
0
j = S�0j .

Pick U 2MGS(�), and let A0 = U(A1 +
P

j2J Aj). Then

hA0;Gen(A0; U�0)i 2 PPP2
(M1M2):

By Convention 35, there exists an R such that RU�0 = S�0 =
S1�

0 �82 �, and

A �1 S1A1+
X
j2J

SjAj = S(A1+
X
j2J

Aj) = RU(A1+
X
j2J

Aj) = RA0:

By Lemma 47(vi), R(Gen(U�0)) �82 �, so

RhA0;Gen(A0; U�0)i � hA; �i;

as desired.

iv) If hA; �i 2 APP2
(M) by rule (gen), then � = 8t�0, we have a shorter

derivation of hA; �0i 2 APP2
(M), and t 62 FTV(A).

By induction there is a pair hA0; �00i 2 PPP2
(M) and a substitution S

such that ShA0; �00i � hA; �0i.

We now show that t 62 FTV(S�00). Then since S�00 �82 �
0, we have

S�00 �82 8t�0 = �, as desired.

Assume by way of contradiction that t 2 FTV(S�00). Since A �1 SA
0,

FTV(SA0) � FTV(A). Therefore, t 62 FTV(A)) t 62 FTV(SA0).

Since t 62 FTV(SA0) and t 2 FTV(S�00), there must be some u 2
FTV(�00) � FTV(A0) such that t 2 FTV(Su). However, it is easily
checked that hA0; �00i 2 PPP2

(M)) FTV(�00)� FTV(A0) = ?, so we
have reached a contradiction.

v) If hA; �i 2 APP2
(M) by rule (sub), then for some �0 �82 �, we have

a shorter derivation of hA; �0i 2 APP2
(M).

By induction there is a pair hA0; �00i 2 PPP2
(M) and a substitution S

such that ShA0; �00i � hA; �0i.

Then by transitivity, S�00 �82 � as desired.
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vi) If hA; �i 2 APP2
(M) by rule (add-hyp), then A = Ax [ fx : �g and

hAx; �i 2 APP2
(M).

By induction there is a pair hA0; �0i 2 PPP2
(M) and a substitution S

such that ShA0; �0i � hAx; �i.

Then ShA0; �0i � hA; �i as desired.

2

6 Recursive de�nitions

We now consider ways of typing recursive de�nitions. We extend the gram-
mar of our language to include terms of the form (�xM). Such a term
is meant to represent the recursive program x such that x = M (M may
contain occurrences of x).

In ML, recursive de�nitions are typed by the following rule:

(rec-simple)
Ax [ fx : �g `M : �

A ` (�xM) : �
(where � 2 T0)

6.1 Recursive de�nitions in �2

In �2 and ML, the rule (rec-simple) seems overly restrictive. Both systems
allow ML type schemes to appear in type environments and as derived types,
suggesting the rule of polymorphic recursion:

(rec-poly)
Ax [ fx : �g `M : �

A ` (�xM) : �
(where � 2 S(1))

Example 60 When extended by (rec-poly), both ML and �2 can type
the following terms:

(�w:(�xy:y)(ww)) : 8t:t! t;

(�w:(�xyz:z)(w 3)(w true)) : 8t:t! t;

(�x:xx) : 8t:t:

Neither is typable with the rule (rec-simple). Other examples are given
by Mycroft [25] and Kfoury et al. [13, 15], who introduced (rec-poly)
independently.

Unfortunately, type inference for �2 or ML extended by (rec-poly) is
undecidable [14, 9], so (rec-simple) is used in practice.
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6.2 Recursive de�nitions in I2

The rule (rec-simple) is one way of typing recursive de�nitions in intersec-
tion type systems. However, as with ML and �2, it seems overly restrictive.
The rule (rec-poly) involves S(1) types, so it is not appropriate for the
intersection type systems. Instead, we might consider a rule like the follow-
ing:

Ax [ fx : �)g `M : �

A ` (�xM) : �
(where � 2 T1)

Note that the full power of the rule is achieved only by allowing T1 derived
types, so the rule is not compatible with the rank 2 intersection type systems
that we have de�ned so far. However, the rule can be adapted to our systems
as follows:

(rec-int)
(8i 2 I) Ax [ fx : (

V
j2I �j)g `M : �i

A ` (�xM) : �i0
(where i0 2 I)

Example 61 The system I2 + (rec-int) can type the following terms:

(�w:(�xy:y)(ww)) : � ! �;

(�w:(�xyz:z)(w 3)(w true)) : � ! �;

where � is any simple type. Neither term is typable in I2 + (rec-simple).

The close connection between I2 and �2 casts some doubt on the de-
cidability of the system I2 + (rec-int). However, I2 + (rec-int) cannot
type all of the terms that can be typed by �2 + (rec-poly). For example,
the term (�x:xx) cannot be typed in I2 + (rec-int). The decidability of
I2 + (rec-int) is an open question.

6.3 Recursive de�nitions in P2

The system P2 could be extended to type recursive de�nitions with either
the rule (rec-simple) or the rule (rec-int) (the rule (rec-poly) is not
appropriate since it requires S(1) types to appear in type environments).
Surprisingly, however, we can do better: by using the rule (rec) below, we
will be able to type more terms than (rec-simple), while retaining principal
typings and decidable type inference.

(rec)
A [ fx : �g `M : �

A ` (�xM) : �
(where � �82;1 �)
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Example 62

i) The following terms are typable in P2+(rec), but are not typable in
P2 + (rec-simple):

(�w:(�xy:y)(ww)) : 8t:t! t;

(�w:(�xyz:z)(w 3)(w true)) : 8t:t! t:

ii) The term (�x:xx) is not typable in P2+(rec). It has type (8t:t) in
ML+(rec-poly) and �2+(rec-poly).

There is an anomaly in the rule (rec): if x does not appear in M , and M

does not have a simple type, then (�xM) will not be typable with (rec).
For example, the term (�x(�y:yy)) is not typable because (�y:yy) is only
typable at rank 2; there is no T1 type that could be assigned to x so that
(rec) applies.

This could be repaired by adding a special rule for the vacuous case:

(rec-vac)
A `M : �

A ` (�xM) : �
(where x 62 dom(A))

Using rule (rec-vac), we may derive the typing

(�w(�x:xx)) : 8s; t:(s ^ (s! t))! t:

However, to simplify our de�nitions we will not consider (rec-vac) further.

6.4 Mutual recursion in P2

We now extend the grammar of our language to include terms of the form
(letrec B in N), where B is a set of mutually recursive de�nitions. A
particular B may be written as x1 = M1; x2 = M2; : : : ; xn = Mn or fxi =
Mi j i 2 Ig, where all of the variables xi are distinct.

Figure 8 gives three rules for typing mutually recursive de�nitions. The
�rst rule, (letrec-simple), is used for typing mutual recursion in ML. No-
tice that in (letrec-simple), the recursive de�nitions must be typed under
the assumption that the recursive variables have simple type. In typing the
body of the de�nition, however, the types of the recursive variables can be
generalized.

We cannot use (letrec-simple) with P2, because P2 does not permit
quanti�ed types to appear in type environments. And it is not easily adapted
to P2. In ML, the polymorphic type Gen(A; �i) of xi is easily obtained from
the simple type �i used in typing the recursive de�nitions. The equivalent of
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(letrec-simple)

(8j 2 I) A [ fxi : �i j i 2 Ig ` Mj : �j (�j 2 T0)
A [ fxi : Gen(A; �i) j i 2 Ig ` M : �

A ` (letrec fxi = Mi j i 2 Ig inM) : �

(letrec-var)
8j 2 I A [ fxi : �i j i 2 Ig ` Mj : �j (�j �82;1 �j)

A ` (letrec fxi = Mi j i 2 Ig in xi0) : �i0

i0 2 I

(letrec)

A [ fxi : �i j i 2 Ig ` N : �
8j 2 I A `^ (letrec fxi =Mi j i 2 Ig in xj) : �j

A ` (letrec fxi = Mi j i 2 Ig inN) : �
N 62 fxi j i 2 Ig

Figure 8: Rules for typing recursive de�nitions

Gen(A; �i) in P2 is some intersection (
V
j2J �j), where each �j is an instance

of Gen(A; �i). It is not immediately clear how to get directly from �i to
(
V
j2J �j).
Instead, we use the following property of (letrec-simple) as a guide

in formulating the rules for P2.

De�nition 63 If B = fx1 = M1; x2 = M2; : : : ; xn = Mng, then we de�ne
hhletrec B in Nii to be the term

(let x1 = (letrec B in x1);
...
xn = (letrec B in xn)

in N):

Lemma 64 If M = (letrec B in N), then in ML + (letrec-simple),
A `M : � i� A ` hhMii : �.

The lemma shows how to type any term (letrec B in N) given only typ-
ings for terms (letrec B in x), where x is de�ned in B. This is the intuition
behind the rules (letrec-var) and (letrec) of Figure 8. (letrec-var)
is a straightforward generalization of the rule (rec) for terms of the form
(letrec B in x), where x is a variable de�ned in B. The above lemma
suggests that we type other letrec expressions by a rule of the form

A ` hhletrec B in Nii : �

A ` (letrec B in N) : �
(N is not de�ned by B)

Of course, let expressions are not de�ned in P2. Therefore, in any lan-
guage except ML, we will regard (let x = M in N) as syntactic sugar
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for (�xN)M , and (let x1 = M1; x2 = M2 in N) as syntactic sugar for
(let x1 = M1 in (let x2 = M2 in N)).

Our rule (letrec) is obtained simply by desugaring the let expression
hhMii into abstractions and applications, and considering how the resulting
term would be typed by (abs) and (app). We make the rule more compact
by using the notation A `^ M : (

V
i2I �i) to abbreviate (8i 2 I) A `M : �i.

We write PR
2 . A ` M : � if the judgment A ` M : � follows by

the rules of P2 and the rules (rec), (letrec-var), and (letrec), with
types appearing in type environments restricted to T1, and derived types
restricted to T82.

Lemma 65 (Weakening for PR
2 ) If PR

2 . A ` M : � and hA; �i �
hA0; �0i, then PR

2 . A0 `M : �0.

Lemma 66 (Substitutivity for PR
2 ) If PR

2 . A `M : �, then PR
2 . SA `

M : S� for any substitution S.

Lemma 67 If M = (letrec B in N), then PR
2 . A ` M : � i� PR

2 . A `
hhMii : �.

6.5 Type inference in PR
2

We de�ne the type inference algorithm for PR
2 , and show that it is sound

and complete.

De�nition 68 The set PPPR

2

(M) of principal pairs for a term M is de�ned

by extending the de�nition of PPP2
(De�nition 55) by the following cases.

iv) If M = (�xN) and hA; �i 2 PPPR

2

(N), then:

a) If x 62 dom(A), and U 2MGS(f� � tg) where t is a fresh type
variable,

then hUA;Gen(UA;U�)i 2 PPPR

2

(M).

b) If x 2 dom(A) and U 2MGS(f� � A(x)g),

then hUAx;Gen(UAx; U�)i 2 PPPR

2

(M).

v) If M = (letrec fxi = Mi j i 2 Ig in xi0), where i0 2 I ,

and hAi; �ii 2 PPPR

2

(Mi) for i 2 I ,

A0 =
P

i2I Ai,
A00 = A0 [ fxi : ti j i 2 I; xi 62 dom(A0); ti freshg,
U 2MGS(f�i � A00(xi) j i 2 Ig),
and A = UA00

fxiji2Ig
,
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then hA;Gen(A;U�i0)i 2 PPPR

2

(M).

vi) If M = (letrec fxi = Mi j i 2 Ig in N), where N 62 fxi j i 2 Ig, and
hA; �i 2 PPPR

2

(hhMii),

then hA; �i 2 PPPR

2

(M).

Theorem 69 If hA; �i 2 PPPR

2

(M), then hA; �i 2 APPR

2

(M).

Proof: By induction on the de�nition of PPPR

2

(M). For the rules of P2,
see the proof of Theorem 58. We only need to consider the following cases.

iv) If M = (�xN), we consider two cases.

a) If x is not free in N , then for some hA0; �0i 2 PPPR

2

(N), fresh

type variable t, and U 2MGS(f�0 � tg),

hA; �i = hUA0;Gen(UA0; U�0)i:

By induction and substitutivity, hUA0; U�0i 2 APPR

2

(N). By

weakening, hUA0 [ fx : Utg; U�0i 2 APPR

2

(N). And by the rules

(rec) and (gen),

hUA0;Gen(UA0; U�0)i 2 APPR

2

(�xN);

as desired.

b) If x is free in N , then for some hA0; �0i 2 PPPR

2

(N) and U 2

MGS(�0 � A0(x)), we have

hA; �i = hUA0
x;Gen(UA

0
x; U�

0)i:

By induction, hA0; �0i 2 APPR

2

(N). Then hUA0; U�0i 2 APPR

2

(N)

by substitutivity. Since U�0 �82;1 UA
0(x), by rule (rec) we have

hUA0
x; U�

0i 2 APPR

2

(�xN). Finally by rule (gen),

hUA0
x;Gen(UA

0
x; U�

0)i 2 APPR

2

(�xN):

v) If M = (letrec fxi = Mi j i 2 Ig in xi0) where i0 2 I ,

then hA; �i = hA000;Gen(A000; U�i0)i, where

hAi; �ii 2 PPPR

2

(Mi) for i 2 I ,

A0 =
P

i2I Ai,
A00 = A0 [ fxi : ti j i 2 I; xi 62 dom(A0); ti freshg
U 2MGS(f�i � A00(xi) j i 2 I; g),
and A000 = UA00

fxiji2Ig
,
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By induction, hAi; �ii 2 APPR

2

(Mi) for i 2 I .

By weakening and substitutivity, hUA00; U�ii 2 APPR

2

(Mi) for i 2 I .

Then by rule (letrec-var), hA000; U�i0i 2 APPR

2

(M), and by (gen),

hA; �i = hA000;Gen(A000; U�i0)i 2 APPR

2

(M).

vi) If M = (letrec xi = Mi j i 2 I in N) where N 62 fxi j i 2 Ig, the
result follows by Lemma 67 and induction.

2

Theorem 70 (Principal pairs for PR
2 ) If hA; �i 2 APPR

2

(M), then there

is a pair hA0; �0i 2 PPPR

2

(M) and a substitution S such that ShA0; �0i �

hA; �i.

Proof: By induction on the de�nition of APPR

2

(M). For the rules of P2,
see the proof of Theorem 59. We only need to consider the following cases.

vii) If hA; �i 2 APPR

2

(M) by rule (rec), then M = (�xN), and for some

� 2 T1, we have hA [ fx : �g; �i 2 APPR

2

(N) and � �82;1 � .

By induction, we have a pair hA0; �0i 2 PPPR

2

(N) and a substitution S
such that

ShA0; �0i � hA [ fx : �g; �i: (3)

We consider two cases.

a) If x 62 dom(A0), let t be fresh and � = f�0 � tg. Now S�0 �82

� �82;1 � by (3), and since � 2 T1, there must be some �
0 2 T0

such that � �1 �
0. Then S�0 �82;1 �

0, so S0 = S [ ft := � 0g is a
solution to �, and we may pick U 2MGS(�). Then

hUA0;Gen(UA0; U�0)i 2 PPPR

2

(�xN):

By Convention 35, there exists an R such that RUA0 = S0A0 =
SA andRU�0 = S0�0 = S�0 �82 �. Furthermore by Lemma 47(vi)
we have R(Gen(UA0; U�0) �82 �, so that

RhUA0;Gen(UA0; U�0)i � hA; �i;

as desired.
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b) If x 2 dom(A0), and � 0 = A0(x), then by (3), S�0 �82 � �82;1

� �1 S�
0, so S is a solution to � = f�0 � � 0g.

Then pick U 2MGS(�), so that

hUA0
x;Gen(UA

0
x; U�

0)i 2 PPPR

2

(�xN):

By Convention 35, there exists an R such that RUA0
x = SA0

x and
RU�0 = S�0. By (3), A �1 SA

0
x and by (3) and Lemma 47(vi),

R(Gen(UA0; U�0)) �82 �. Therefore

RhUA0
x;Gen(UA

0
x; U�

0)i � hA; �i;

as desired.

viii) If hA; �i 2 APPR

2

(M) by rule (letrec-var),

then M = (letrec fxi = Mi j i 2 Ig in xi0) for some i0 2 I , and
for some A0 = fxi : �i j i 2 Ig, we have � = �i0 , and hA [A0; �ii 2
APPR

2

(Mi) and �i �82;1 �i for all i 2 I .

By induction, for all i 2 I we have disjoint pairs hAi; �
0
ii 2 PPPR

2

(Mi)
and substitutions Si such that

SihAi; �
0
ii � hA [A0; �ii: (4)

Then Si�
0
i �82;1 �i, and since each �i 2 T1, there must be a � 0i 2 T0

such that �i �1 �
0
i , and thus Si�

0
i �82;1 �

0
i .

Let A0 = (
P

i2I Ai), A
00 = A0[fxi : ti j i 2 I; xi 62 dom(A0); ti freshg,

� = f�0i � A00(xi) j i 2 Ig, and S = fti := � 0i j i 2 I; xi 62 dom(A0)g [
(
S
i2I Si).

By (4), if xi 2 dom(A0), then

S�0i �82 �i �82;1 �i �1 SA
0(xi) = SA00(xi):

Otherwise xi 62 dom(A0) and

S�0i �82;1 �
0
i = SA00(xi):

Therefore S is a solution to �.

Pick U 2MGS(�) and let A000 = UA0
fxiji2Ig

. Then

hA000;Gen(A000; U�0i0)i 2 PPPR

2

(M):
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By Convention 35, there exists an R such that RU�0i0 = S�0i0 �82

�i0 = �, and

RA000 = RUA0
fxiji2Ig

= SA0
fxiji2Ig

�1 A:

By Lemma 47(vi), R(Gen(A000; U�0i0)) �82 �, so

hA000;Gen(A000; U�0i0)i � hA; �i:

ix) If hA; �i 2 APPR

2

(M) by rule (letrec), the result follows by Lemma 67
and induction.

2

6.6 Comparing (letrec) and (letrec-simple)

Now we show that our rules for typing recursive de�nitions are at least as
powerful as the usual ones for ML.

We write MLR . A ` M : � if A ` M : � follows by the rules of ML
and the rules (rec-simple) and (letrec-simple), and �R

2 . A ` M : �
if A ` M : � follows by the rules of �s

2 and (rec-simple) and (letrec-
simple).

It is well known (cf. [14]) that �R
2 types strictly more terms than MLR.

Theorem 71 (Comparison of MLR and �R
2 ) If MLR . A `M : � , then

�R
2 . A `M : � . The converse does not hold.

To show the relationship between �R
2 and PR

2 , we �rst state the following
result, without proof.

Lemma 72 If M = (letrec B in N), then �R
2 . A ` M : � i� �R

2 . A `
hhMii : �.

Theorem 73 (Comparison of �R
2 and PR

2 ) If �R
2 . A ` M : � , then

PR
2 . A0 `M : � 0, where A �1 A

0 and � �2 �
0.

Proof: We will use the following facts, which we state without proof:

� If � �1 �
0 and � 2 T0, then � = � 0.

� If � �2 �
0 and � 2 T0, then � = � 0.

� If A �1 A
0, then SA �1 SA

0.

51



� If �R
2 . A `M : � and Gen(A; �) � �0, then �R

2 . A `M : �0.

We prove the theorem by induction on M . By Lemmas 67 and 72, we need
not consider the case M = (letrec B in N) where N is not a variable
de�ned in B. The cases M = x, M = (�xN), and M = (M1M2) can be
proved just as in Theorem 12, and the case M = (�xN) is trivial. That
leaves only the following case.

� M = (letrec fxi = Mi j i 2 Ig in xi0), where i0 2 I .

Then for some T0 type environment A0 = fxj : �j j j 2 Ig, we have

�R
2 . A [ A0 `Mi : �i

for all i 2 I , and Gen(A; �i0) � � .

By induction, for all i 2 I we have

PR
2 . A0

i `Mi : �
0
i ;

where (A [A0) �1 A
0
i and �i �2 �

0
i . Since �i 2 T0 we have �i = � 0i .

Let A0 = (
P

i2I A
0
i) + A0; then (A [ A0) �1 A

0, and A0(xj) = �j for
any j 2 I . By weakening, PR

2 . A0 ` Mi : �i for all i 2 I . By rule
(letrec-var),

PR
2 . A00 ` (letrec fxi = Mi j i 2 Ig in xi0) : �i0 ;

where A00 = A0
fxjjj2Ig

. Since Gen(A; �i0) � � , for some substitution S

we have S�i0 = � and dom(S) = FTV(�i0) � FTV(A). By substitu-
tivity,

PR
2 . SA00 ` (letrec fxi = Mi j i 2 Ig in xi0) : �;

and A �1 A
00 ) A = SA �1 SA

00.

2

7 Compiling with rank 2 intersection types

We brie
y discuss some applications of rank 2 intersections in compilation.
Polymorphism allows a function F of type 8t:t ! t to be applied to

arguments of any type. Unfortunately, it also requires that the data rep-
resentation of its arguments be reduced to a lowest common denominator:
the machine code for F cannot handle both a 32-bit integer in a general
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purpose register and a 64-bit 
oating point number in a 
oat register. In
practice, arguments are \boxed," or represented as a pointer to the actual
data value stored in main memory. Boxing and unboxing coercions slow
program execution.

These overheads can be reduced when more is known about the uses of
the polymorphic function. For example, consider the program

M = (�f:(f 3; f true))F:

A naive implementation would insert instructions to box the arguments 3
and true before passing them to F . A more clever implementation would
recognize that the only arguments of F are integers and booleans, both of
which can be represented in a single 32-bit register; so F could be compiled
to expect an unboxed value as its argument.

This can easily be achieved in P2. To compile M , we �rst calculate the
principal typings of the operator and operand:

(�f:(f 3; f true)) : 8s; u:(int! s) ^ (bool! u)! s� u;

F : 8t:t! t:

The type of the operator indicates that F will only be applied to integers
and booleans, and the compiler can take advantage of this in generating the
machine code for F . Note that this improves on Bj�rner's minimal typing
derivations [3], which would require the arguments to be boxed.

P2 also supports other data representation strategies. For example, in
compiling the program (�f:(f 3; f 2:4))F , we will calculate the principal
typing

(�f:(f 3; f 2:4)) : 8s; u:(int! s) ^ (
oat! u)! s� u:

If 
oating point numbers are 64-bit values, we can't just compile F to expect
its argument in a 32-bit register, as before. Boxing is one solution. But
another solution is possible: specialization [8]. We can generate two versions
of F , one expecting an unboxed integer in a 32-bit register, and one expecting
an unboxed 
oat in a 64-bit register. We are essentially overloading the
variable f , so the application (f 3) invokes the integer-expecting F , and
(f 2:4) invokes the 
oat-expecting F .

8 Conclusion

We discussed a variety of rank 2 type systems: �2, the rank 2 fragment
of System F; I2, Is2, and Ivb2 , all variants of the rank 2 intersection type
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discipline; and P2, which adds ML-style, top-level quanti�cation of type
variables to I2. We showed that all of the systems are equivalent in terms
of typability|a term is typable in one system if and only if it is typable in
another. An immediate corollary is that typability in all of these systems is
DEXPTIME-complete. We have also determined that the sequence Ivb2 , Is2,
I2, P2 is in order of increasing \expressiveness." For example, a judgment
of Ivb2 is a judgment of P2, but not vice versa.

We proposed a new rule for typing recursive de�nitions that can type
many examples of polymorphic recursion. The extension of P2 by this rule
results in a system with principal typings and decidable type inference.

Finally, we discussed some applications of intersections in compilation.
The �nite polymorphism of intersections expresses data representation con-
straints more accurately than polymorphism by quanti�cation. The accu-
rate expression of these constraints leads to data representations that require
fewer boxing and unboxing coercions at runtime.
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